2.1.Q

Hint

For FEM solution see R2.A.

Video

Given is a structure consisting of three rods with Young’s Modulus \(E\) und cross-sectional area \(A\).

../../../_images/2.1.Q.png

Given symbols: \(F, l, E, A.\)

Use the following shortcuts:

\begin{align*} \begin{bmatrix} {\color{green}{c_1}} \\ {\color{green}{s_1}} \end{bmatrix} &= \begin{bmatrix} \cos \varphi_1 \\ \sin \varphi_1 \end{bmatrix} = \begin{bmatrix} \tfrac{\sqrt 2}{2} \\ \tfrac{\sqrt 2}{2} \end{bmatrix} \\ \begin{bmatrix} {\color{green}{c_2}} \\ {\color{green}{s_2}} \end{bmatrix} &= \begin{bmatrix} \cos \varphi_2 \\ \sin \varphi_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ \begin{bmatrix} {\color{green}{c_3}} \\ {\color{green}{s_3}} \end{bmatrix} &= \begin{bmatrix} \cos \varphi_3 \\ \sin \varphi_3 \end{bmatrix} = \begin{bmatrix} -\tfrac{\sqrt 2}{2} \\ \tfrac{\sqrt 2}{2} \end{bmatrix} \end{align*}

Proceed as follows:

Steps

1. Equilibrium

Cut around node 1. Note the Equilibrium conditions.

Solution

../../../_images/2.1.Q_1.png
\begin{align} \rightarrow & & 0 &= - S_1 {\color{green}{c_1}} - S_2 {\color{green}{c_2}} - S_3 {\color{green}{c_3}} \\ \uparrow & & 0 &= - S_1 {\color{green}{s_1}} - S_2 {\color{green}{s_2}} - S_3 {\color{green}{s_3}} - F \end{align}

Hint

  • The section force vector on the positive face has the \((x,y)\)-components \((S_1 c_1, S_1 s_1)\).

  • The section force vector on the negative face has the \((x,y)\)-components \((- S_1 c_1, - S_1 s_1)\).

2. Kinematics: Unit Vectors and Elongations

Find the rod elongations \(\Delta l_1, \Delta l_2, \Delta l_3\) in terms of the \((x,y)\)-components \((u_{4x}, u_{4y})\) of the displacement vector \(\boldsymbol u_4\) of node 4.

Solution

\((x,y)\)-components of the unit vectors:

\begin{align*} \begin{bmatrix} e_{1x} \\ e_{1y} \end{bmatrix} &= \begin{bmatrix} {\color{green}{c_1}} \\ {\color{green}{s_1}} \end{bmatrix} \\ \begin{bmatrix} e_{2x} \\ e_{2y} \end{bmatrix} &= \begin{bmatrix} {\color{green}{c_2}} \\ {\color{green}{s_2}} \end{bmatrix} \\ \begin{bmatrix} e_{3x} \\ e_{3y} \end{bmatrix} &= \begin{bmatrix} {\color{green}{c_3}} \\ {\color{green}{s_3}} \end{bmatrix} \end{align*}

Elongations:

\begin{align*} \Delta l_1 &= \begin{bmatrix} {\color{green}{c_1}} & {\color{green}{s_1}} \end{bmatrix} \begin{bmatrix} u_{4x} \\ u_{4y} \end{bmatrix} \\ &= \begin{bmatrix} \tfrac{\sqrt2}{2} & \tfrac{\sqrt2}{2} \end{bmatrix} \begin{bmatrix} u_{4x} \\ u_{4y} \end{bmatrix} \\ &= \tfrac{\sqrt2}{2} (u_{4x} + u_{4y})\tag{3} \\ \Delta l_2 &= \begin{bmatrix} {\color{green}{c_2}} & {\color{green}{s_2}} \end{bmatrix} \begin{bmatrix} u_{4x} \\ u_{4y} \end{bmatrix} \\ &= \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} u_{4x} \\ u_{4y} \end{bmatrix} \\ &= u_{4y}\tag{4} \\ \Delta l_3 &= \begin{bmatrix} {\color{green}{c_3}} & {\color{green}{s_3}} \end{bmatrix} \begin{bmatrix} u_{4x} \\ u_{4y} \end{bmatrix} \\ &= \begin{bmatrix} \tfrac{-\sqrt2}{2} & \tfrac{\sqrt2}{2} \end{bmatrix} \begin{bmatrix} u_{4x} \\ u_{4y} \end{bmatrix} \\ &= \tfrac{\sqrt2}{2} (-u_{4x} + u_{4y})\tag{5} \end{align*}

3. Elasticity

Find the elongations in terms of the section forces and the given symbols.

Solution

Rod 1 and 3: Length \(\sqrt 2 l\). Rod 2: Length \(l\).

\begin{align} \Delta l_1 &= \tfrac{S_1}{EA} \sqrt 2 l \tag{6}\\ \Delta l_2 &= \tfrac{S_2}{EA} l \tag{7}\\ \Delta l_3 &= \tfrac{S_3}{EA} \sqrt 2 l \tag{8} \end{align}

4. System of Equations and Solution

Find in terms of the given symbols:

\begin{align*} S_1 &= \ldots F \\ S_2 &= \ldots F \\ S_3 &= \ldots F \\ \Delta l_1 &= \ldots \frac{Fl}{EA} \\ \Delta l_2 &= \ldots \frac{Fl}{EA} \\ \Delta l_3 &= \ldots \frac{Fl}{EA} \\ u_{4x} &= \ldots \frac{Fl}{EA} \\ u_{4y} &= \ldots \frac{Fl}{EA} \end{align*}

For the following quantities:

\begin{align*} F &= 5\,\mathrm{kN} \\ E &= 200\,\mathrm{GPa} \\ A &= 25\,\mathrm{mm}^2 \\ l &= 1707\,\mathrm{mm} \end{align*}

Find \(u_{4y}\) in \(\mathrm{mm}\) (millimeters) rounded to \(0.0001\):

\[u_{4y} \approx \ldots \, \mathrm{mm}\]

Solution

8 equations to solve for the 8 unknowns \((S_1, S_2, S_3, \Delta l_1, \Delta l_2, \Delta l_3, u_{4x}, u_{4y})\):

\begin{align*} 0 &= S_1 c_1 - S_3 c_1 \tag{1}\\ 0 &= F + S_1 c_1 + S_2 + S_3 c_1 \tag{2}\\ \Delta l_1 &= \tfrac{\sqrt2}{2} (u_{4x} + u_{4y}) \tag{3}\\ \Delta l_2 &= u_{4y} \tag{4} \\ \Delta l_3 &= \tfrac{\sqrt2}{2} (-u_{4x} + u_{4y})\tag{5}\\ \Delta l_1 &= \tfrac{S_1}{EA} \sqrt 2 l \tag{6}\\ \Delta l_2 &= \tfrac{S_2}{EA} l \tag{7}\\ \Delta l_3 &= \tfrac{S_3}{EA} \sqrt 2 l\tag{8} \end{align*}

Solution:

\begin{align*} S_1 &= \left(-1 + \frac{\sqrt{2}}{2} \right) F \notag \\ S_2 &= \left(-2 + \sqrt{2} \right) F \notag \\ S_3 &= \left(-1 + \frac{\sqrt{2}}{2} \right) F \notag \\ \Delta l_1 &= \left( - \sqrt{2} + 1 \right) \frac{Fl}{EA} \notag \\ \Delta l_2 &= \left( -2 + \sqrt{2} \right) \frac{Fl}{EA} \notag \\ \Delta l_3 &= \left( - \sqrt{2} + 1 \right) \frac{Fl}{EA} \notag \\ u_{4x} &= 0 \cdot \frac{Fl}{EA}\notag \\ u_{4y} &= \left( -2 + \sqrt{2} \right) \frac{Fl}{EA} \notag \\ \notag \\ u_{4y} &\approx-0.9999\,\mathrm{mm} \end{align*}

5. Symmetry

Show that the same solution can be found by using the symmetry of the system.

Solution

../../../_images/2.1.Q_symm.png

6 equations for the 6 unknowns \((S_1, S_2', \Delta l_1, \Delta l_2, u_{4x}, u_{4y})\):

\begin{align*} 0 &= u_{4x} \tag{1}\\ 0 &= \tfrac 1 2 F + S_1 c_1 + S_2' \tag{2} \\ \Delta l_1 &= \tfrac{\sqrt2}{2} (u_{4x} + u_{4y}) \tag{3} \\ \Delta l_2 &= u_{4y} \tag{4} \\ \Delta l_1 &= \tfrac{S_1}{EA} \sqrt 2 l \tag{5} \\ \Delta l_2 &= \tfrac 1 2 \tfrac{S_2}{EA} l \tag{6} \end{align*}

Solution:

\begin{align*} S_1 &= \left(-1 + \frac{\sqrt{2}}{2} \right) F \notag \\ S_2' &= \tfrac 1 2 \left(-2 + \sqrt{2} \right) F = \tfrac12 S_2 \notag \\ \Delta l_1 &= \left( - \sqrt{2} + 1 \right) \frac{Fl}{EA} \notag \\ \Delta l_2 &= \left( -2 + \sqrt{2} \right) \frac{Fl}{EA} \notag \\ u_{4x} &= 0 \cdot \frac{Fl}{EA}\notag \\ u_{4y} &= \left( -2 + \sqrt{2} \right) \frac{Fl}{EA} \notag \end{align*}